Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
J Med Virol ; 2022 Nov 23.
Article in English | MEDLINE | ID: covidwho-2173196

ABSTRACT

PURPOSE: Viral reactivation is widespread in patients with severe pneumonia, yet the landscape of viral reactivation in the lungs is not well-known. This study aims to assess the landscape and clinical features of viral reactivation in the early onset of severe pneumonia in ICU patients. METHODS: The clinical data from 97 patients were collected retrospectively from the intensive care units of five teaching hospitals between June 2018 and July 2021. Metagenomic next-generation sequencing (mNGS) of the bronchoalveolar lavage fluid (BALF) was performed at the onset of severe pneumonia. RESULTS: Cytomegalovirus (CMV), herpes simplex virus-1 (HSV-1), and Epstein-Barr virus (EBV) were the most common reactivated viruses in the lower respiratory tract of patients with severe pneumonia. After adjusting for the risk of confounding and competition of age, sex, sequential organ failure assessment, acute physiology chronic health assessment II and immunosuppression status, viral reactivation resulted in an overall 2.052-fold increase in 28-day all-cause mortality (95% CI: 1.004-4.194). CONCLUSION: This study showed that CMV, HSV-1, and EBV were the most common reactivated viruses in the lungs of patients with severe pneumonia. The existence of viral reactivations was associated with an increased risk of mortality. The simultaneous reactivation of multiple viruses needs to be considered in the design of clinical trials. This article is protected by copyright. All rights reserved.

2.
Front Microbiol ; 12: 833054, 2021.
Article in English | MEDLINE | ID: covidwho-1834458

ABSTRACT

OBJECT: To reveal convergent IGH signatures and the association with severity of coronavirus disease 2019 (COVID-19) patients. METHOD: A total of 25 COVID-19 inpatients were classified into three clinical conditions: mild, severe, and critical. We analyzed convergent IGH signatures by ImmuHub® B-cell receptor (BCR) profiling system. RESULTS: IGH singleton frequency in patients is significantly lower than that of healthy donors (HDs). The clonality index of IGH in patients is significantly higher than that in HDs. Nevertheless, no significant difference was observed among the three groups. The difference in IGH clonality (top five clones) between post- and pretreatment was significant in the improvement and deterioration groups. Three common public motifs were shared by all COVID-19 patients: ARDYGG, RWYFDY, and YYYYGMDV. CONCLUSION: B cells could recognize severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and produce clonal expansion. Patients who had better outcomes after treatment had higher IGH clonality. Three common public motifs-ARDYGG, RWYFDY, and YYYYGMDV-might be used for vaccine development (ChiCTR2000029626).

SELECTION OF CITATIONS
SEARCH DETAIL